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Abstract 

An inequality relation has been derived from two 
different points of view. The first is according to a 
sum rule of the partial structure factors for individual 
atomic species or static concentration waves in the 
terminology of Khachaturyan [Phys. Status Solidi B 
(1973), 60, 9-37] and the second is based on the 
condition that the total intensity must be positive. 
The two methods lead to the same result. That is, 
among al [=-X~XcOC Bc (q)], Oil2 [~-~XcXAOICA(q)] and tea 
[--XAX~aAB(q)] for an A - B - C  ternary alloy [XA being 
the fraction of atom A and aA~(q) the Fourier trans- 
form of the Warren-Cowley parameters, i.e. the 
partial intensity for the pair A-B],  the following 
restriction condition has been achieved: ap + aq >- 0 
(p ~ q), and simultaneously Y,~ apaq >- O. This should 

p<q  

be helpful for judging whether the partial intensities 
obtained are in principle possible or forbidden. 

1. Introduction 

Three independent interatomic correlation functions 
(for pairs A-B, B - C  and C-A)  are necessary for 
describing the short-range-ordered state in a ternary 
( A - B - C )  alloy and are associated with their own 
partial X-ray diffuse-scattering intensities through the 
Fourier transformation. In experiments, however, the 
X-ray diffuse intensity is observed as a superposition 
of the three partials and, if the individual interatomic 
correlations are required to be known, they must be 
theoretically separated by handling the data collected 
with different kinds of radiation. 

Recently synchrotron radiation .from an electron 
storage ring has been actively used for diffraction and 
spectroscopy experiments as a strong white X-ray 
source. Experimental application of the anomalous 
scattering of the radiation to the short-range-order 
(SRO) diffuse scattering from ternary alloys has 
begun to be reported (Hashimoto, Iwasaki, Ohshima, 
Harada, Sakata & Terauchi, 1985) as well as a theo- 
retical analysis of such intensity data (Cenedese, Bley 
& Lefebvre, 1984). 

Cenedese et al. (1984) suggested criteria for testing 
the reliability of deducing the partial intensities from 
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the viewpoint of the propagation of observational 
errors through the theoretical calculation. The 
importance of such a discussion is closely related to 
the fact that the intensity analysis is based on a 
recognition of very small variations of contrast in the 
intensity data obtained with the use of several kinds 
of radiation (Hashimoto et al., 1985; Cenedese et al., 
1984). We here try to find another criterion to judge 
whether any given set of partial intensities is in prin- 
ciple possible or forbidden. Such a criterion may be 
helpful in avoiding mistakes caused by unexpected 
errors in the observations and physical constants used 
in the analysis and in constraining the intensity analy- 
sis so that it does not result in a physically forbidden 
set of values for the partials. 

In the present work, we derive a formula for the 
restriction relation among the partial intensity values 
using a sum rule for the partial structure factors of 
the individual atomic species (defined in § 3.1) or 
static concentration waves in the terminology of 
Khachaturyan (1973). We further show another 
method (leading to the same result) based on the 
condition that the total diffuse intensity must be posi- 
tive or zero, even though any kind of radiation is 
adopted for measurement fictitiously. 

2. Basic equation of the SRO diffuse intensity in a 
multi(N)-component alloy system 

We shall give a derivation of the intensity equation 
in detail so that the assumptions used can be made 
apparent. We here ignore both the static displace- 
ments of atoms from the average lattice points and 
the dynamic ones, i.e. the thermal vibrations of atoms. 

The kinematic X-ray intensity scattered from a 
crystal can generally be expressed as (Guinier, 1963) 

I(q)=~,~,f , , , f* exp [-27riq. (Rm - Rn)], (1) 
/91 /1 

where q is the scattering vector, f,~ the atomic scatter- 
ing factor of an atom at the ruth lattice site and R,~ 

i (i 1 , . . . , N ,  the lattice vector. We first define o-,, = 
specifying the atomic species in the N-component 
alloy) as 

trm' {10 i f a n a t ° m ° f t y p e i i s a t s i t e m ' =  (2) 

otherwise, 
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and then define a concentration deviation parameter 
i r/m (Taggart, 1973; de Fontaine, 19795") as 

i i 
71 m = tr m -- Xi, (3) 

where xi is the fraction of the ith type of atom. fm 
referred to the m site is expressed as 

N N 

fm Y ' = ~ m f , = E  (x,+ ' r / r e ) f / ,  ( 4 )  
i = 1  i = 1  

where f~ is the atomic scattering factor of atom i. 
Inserting (4) into (1), we have 

l(q) = E E IE x,f,I = exp [ - 2 7 r i q .  ( R , ,  - R , , ) ]  
m n i 

x exp [-2¢riq.  (Rm-  R,,)], (5) 

where a conservation relation 

r / ~ = 0  (6) 
m 

is used. The first term in (5) represents the funda- 
mental reflection intensity and the second term the 
SRO diffuse scattering intensity. Both terms can be 
rewritten in the form I-.-I 2, indicating that they are 
individually positive. From another conservation 
rule, 

r/~ = 0, (7) 
J 

the second term in (5) is developed as 

× exp [ - 2 ~ - i q .  (R,,, -R, , )  

• ) - r / ° f ,  + E r /~f*  
j ( ¢ i )  j ( # i )  

× exp [-2¢riq.  ( R m - R , ) ]  

- - E E E E  r/'mr/L(--If~l=+f,f *) 
m n i C j  

× exp [ - 2  zriq. (R,,, - R,,)]. (8) 

From the relation 

(r/~r/J.)=(r/~r/'.) or (r/~r/~) i j = (r/,,r/,.), (9) 

which indicates the equality of the number of ij and 
j i  pairs in the crystalline solid solution,+ we can write 

i j ISRO(q) = _)-" ~ ]f_fj[2 ~ ~ r/mr/,, 
i < j  m n 

× exp [ - 2 7 r i q .  (R,, - R,)],  (10a) 

-1 de Fontaine used a notation y~(m) for the parameter in his 
paper. 

~: For example, see p. 265 in Gunier's (1963) text, in which a 
binary case is treated. 

and then 

i j IsRo(q) = --~ ~ If~--fjl2 ~ ~ r/,,,r/, 
i < j  m n 

X COS [27rq. (Rm - R,,)]. (10b) 

Here, if we put 
i j 

-x iXjam, , ,  (11) 

we can rewrite (10b) as 

ISRO(q) = n,, ~ ~ x,xjlf,-fjl2 O(q), (12) 
i < j  

a ° ( q ) -  E aN cos (27rq. R,), (13) 
I 

where na is the total number of atoms in the crystal. 
The double summation with respect to m and n in 
(10) was replaced by a single summation over I (Rt 
indicating the interatomic vector R , -  Rm), since the 
interatomic correlation length is much smaller than 
the coherent length of X-rays. We call x,xjlf,-fjl 2 
x a°(q) (in electron units) or ai~(q) (in Laue units) 
the 'SRO partial intensity' for the ij pair of atomic 
species. 

Equation (11) is in accordance with the definition 
~d" the Warren-Cowley SRO parameter (Cowley, 
1950; Hayakawa & Cohen, 1975), i.e. 

it  .. aN (or a,,,,,) = 1 - ( P ~ / x j ) ,  (14) 

where P~ is the probability of finding atom j at the 
extremity of Rt with the origin on an i atom, i.e. the 
so-called conditional probability. 

As is readily seen from (lOa), the partial intensity 

never has the form I...I 2. This suggests that the partial 
intensities are not necessarily all positive.* Of course, 
the superposition of those partials must be positive, 
even if thef~'s take an arbitrary set of complex values. 
Thus, we can expect the existence of some restriction 
condition among the a~(q)'s. The derivation of such 
a condition will be made in the next section. 

Before going to the next section, we briefly mention 
how the separation of the composed intensity as 
observed into the partials is performed. The intensity 
is expressed as a linear equation including N ( N -  
1)/2 unknowns for an N-component alloy [see (12)], 
for example, a sc,  a cA and a AB in an A - B - C  ternary 
alloy, and their weighting factors ( [ f B - f c [  2 etc.) are 
functions of the atomic scattering factors, which are 
variable through the anomalous scattering effect near 
the X-ray absorption edges of the elements. Once we 
have at least N ( N -  1)/2 kinds of lsao(q) measured 
with different wavelengths of radiation at the same 
point q in reciprocal space, we can solve the linear- 
equation system in principle. 

* In an A-B  binary alloy system, (10a) or (12) consists of a 
single term only for the A-B  pair. From (7), we have r/~ = _~a 
and (10a) has the form [...[2. The diffuse intensity is necessarily 
positive. 
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3. Relation between the partial intensity values 

3.1. Based on a sum rule of  the partial structure factors 

In § 2 we obtained an intensity equation represen- 
ted in terms of ~ ' ~ m  S in (10). Here, we define a sort 
of structure factor 

Si(q) --- ~ r//m exp ( -27r iq .  Rm), (15) 
m 

and call Si(q) the 'partial structure factor'. For the 
S~(q)'s (i = A, B and C), we have a sum rule, from 
the conservation rule (7), 

~, Si(q)=O (16) 
i 

at any point q in reciprocal space. 
We notice here that the process for deriving (10a) 

obeys the symmetry condition (9), which implies that 
the interatomic correlation function has an inversion 
symmetry in the real lattice. Then S~(q)SJ*(q) 
becomes real and we can rewrite (10a) as 

IsRo(q) =-Y, Y~ If,-£12 Re [S'(q)SJ*(q)] (17) 
i<j  

explicitly so as to make the meaning apparent. By 
comparing (17) with (12), we have 

n,,x,xja~J(q)=-Re [S'(q)SJ*(q)]. (18) 

Thus, we can regard - R e  ( s i s  -i*) as a partial intensity 
for the pair/j ,  hereafter represented as %. 

From (16), we can put 

s A = - ( s B + s  c) (19a) 

in the ternary case and obtain a~ as follows. We first 
calculate 

sAsA:~ ~--(S B -~ s C ) ( s  B -~- sC) :g, (19b) 

and then derive 

a ~ = - R e  (sBsC*)--(IS'~I=+IsCl2--1sAI=)/2. (208) 

Similarly we have 

o~2----Re(SCsA*)=(Iscl2+IsAI2--1SBI2)/2, (20b) 

a3=--Re(SASB*)=(IsAI2+ISBI2-ISCl2)/2.  (20c) 

From (20b)+ (20e), we have 

a2+a3=lsAI 2. (21) 

The right-hand side is positive or zero, and so we have 

a2+ a3->O. (22a) 

Similarly, we have 

83+ 81 -> 0, (22b) 

81 + 82 >- 0. (22c) 

Since Si(q) can be regarded as a vector in a complex 
coordinate system, (16) can be drawn by a closed 
loop as illustrated in Fig. 1. Is'l represents the length 

of a side of the triangle, and the following inequalities 
must be satisfied: 

Is'l<_lSJl+lSkl ( i # j ~ k # i ) .  (23) 

By expressing the ISi]'s in terms of the ap's through 
(21) and the other two corresponding equations for 
B and C atoms, and inserting them into (23), we can 
obtain an inequality among the top's. From (21) and 
the corresponding equations, we have 

IsAI = ( c~2 + ~3) ~/2, (24a) 

Is~l-- (~3 + ~,),/z, (24b) 

IsCl = (~,  + ~2) '/=. (24c) 

Substituting (24) into (23), we get 

(Ol~q "+" Otr) 1/2 ~ ( Ol q "~- Ol p ) 1/2 "Jl- ( Ol p "@ Ol~r) 1/2 

( p # q # r # p ) .  (25) 

Squaring both sides of (25), we obtain 

This is always satisfied when a,-> 0 for all kinds of 
p. For %, < 0, by squaring both sides we have 

t~ 1 a 2  "~- t~2 a 3  -1- ~3  a 1 ~ O. (26) 

Since this is also satisfied in the case that the av's are 
all positive or zero, we finally have the result 

XcXAOI CA(q) + XAXBOtAB(q) > 0 (27a) 

[from (22a)] and simultaneously 

x c a  ~c (q)a CA(q) + XAOI CA(q) O ~ AB (q) 

+ XBOtaB(q)ot Bc (q) -->0 (27b) 

[from (26)]. Equations (22b) and (22c) are naturally 
satisfied under the conditions of (22a) and (26) [or 
(27a) and (27b)], but (22a-c) enable us easily to find 
that two or more of  the partial intensities ap (p = 1-3) 
must be positive and that the absolute value of  a nega- 
tive partial, if  present, is smaller than the other two 
positive ones. Fig. 2 shows sections (or 3 ---- constant) of 
the region limited by (22a) and (26) in % space. Fig. 
2(a) is for the case of 8 3 > 0  and (b) for ce3<0. Fig. 
2 shows the possibility of the presence of a negative 
partial intensity and shows that two or more kinds 
of partial intensity are not simultaneously negative 
as mentioned just above. 

I 

5 B 

o R" 

Fig. 1. Closed-loop construction with three 'partial structure 
factors' in the complex coordinate system. 
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This aspect is geometrically understood from Fig. 
3. The factor Re (SiS j*) implies a scalar product of 
the S ~ and S j vectors and three typical cases are 
possible. Case (a) in Fig. 3 indicates that the three 
vectors make an acute-angled triangle, where all the 
- R e  (SiSJ*)'s are positive, corresponding to the case 
of all aU(q)'s being positive. In case (b), both 
- R e  (SBS c*) and - R e  (ScS  a*) are positive, but 
- R e  ( s A s  8.)  equals zero. That is, one of the partial 
intensities vanishes and the other two are positive. 
Case (c) has one obtuse angle, and we have 
- R e  (SAS B*) negative and the other two positive. 

In the following subsection, we will turn to another 
procedure for obtaining the restriction condition in 
order to gain further insight into the SRO properties 
in a ternary alloy. 

3.2. Based on the positive condition of the total intensity 

The second term in (5) has the form I..-I 2 and must 
be positive. Therefore, the total diffuse intensity (12) 
must also take a positive value at every point q in 
reciprocal space. 

Here, we start by considering that (12) must be 
positive for any kind of radiation. We make the fol- 
lowing replacements, for simplicity: 

x = - f B - f c ,  (28a) 

Y = f c  --fA, (28b) 

where the atomic scattering factors can be treated as 
real numbers. This should lead to a true conclusion, 
since the real and imaginary parts contribute indepen- 
dently to the intensity equation in the same algebraic 

(12 

. . . .  -t . . . . . . . . . . . . . .  
, I } i 

_ ~ _ ~ 0 ~ < ~ a ~ ~  _, , ~ ~ ' ; '(1, 
F £  . . . . . . . . . . . . . .  : 

(a) (b) 

Fig. 2. Sections of the possible region of partial intensity values 
in ap space. (a) The case of a 3 [=- -n . xAxBotAI~(q ) ]  positive, here 
taken as unity. (b) The case of a3 negative. 

B 8 

0 $a R 0 S a R 0 SA R 

(a) (b) (c) 

Fig. 3. Three typical relations among the 'partial structure factors' 
Si(q) (i = A, B and C), which are complex quantities. The vec- 
tors are drawn with respect to the phase of S A. 

form (see Appendix). Then we have, instead of (12), 

ISRO(q) =¢e] x2+ o¢2y 2+ O~3(X +Y) 2, (29) 

where am = naxBxca~C(q) etc., as defined in the pre- 
ceding subsection, are used. If x # 0  (i.e. f B # f c ) ,  
division of (29) by x 2 gives 

ISRO(q)/X2 = ( a 2  + ~ 3 )  t 2 +  2a3t + (am + a3), (30) 

where t = y / x .  The condition that ISRO(q) must be 
positive or zero leads to the following two cases, since 
the right-hand side of (30) is in a quadratic form with 
respect to r Firstly, 

Of 2 "~" 0~3 > 0 (31) 

and simultaneously the discriminant must be nega- 
tive, i.e. 

D =  a ] -  (a2+ ~ 3 ) ( 0 ¢ 1  7t- O!3) 

= - (oq  a2 + a2cr3 + a3am) <- 0; (32) 

or, secondly, ( a 2 + a 3 ) = 0 ,  ce3=0 and (am + tr3) _> 0, 
Le. 

Of. 2 = Of 3 = 0 

and 

0 ~ 1 ~  0 .  

The latter case is included in the former, except for 

al = a2 = a3 = 0. (33) 

However, this is compatible with the conditions (31) 
and (32) by rewriting (31) as 

a2 + a3 -> 0. (34) 

Thus, we achieve the same result as that [(22a) and 
(26)] obtained in § 3.1. 

4. Discussion 

The results in §§ 3.1 and 3.2 suggest the equivalence 
of the two methods. We shall not prove this, because 
it is not the aim of the present work. We insist here 
that the requirement of a geometrical possibility of 
atomic configuration on the crystal lattice (=con-  
sideration of the sum rule for the Si's) is consistent 
with the fact that the total diffuse intensity is a positive 
quantity. We have further found that there is a possi- 
bility of the existence of a negative partial intensity. 

The criterion achieved in the present work is avail- 
able for judging whether the partial intensities 
deduced are in principle possible or forbidden. It is 
a restriction condition and is different from the 
criteria proposed by Cenedese et al. (1984), which 
were based on an error analysis. Scientists sometimes 
experience the risk of mistake caused by unexpected 
uncertainties in the measured values and in the phys- 
ical (theoretical and experimental) constants used in 
the analysis. In the experimental studies considered 
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here, this kind of mistake may occur when the contrast 
matrix of the linear equation system of diffuse 
intensity is not well conditioned, i.e. in the case that 
the anomalous scattering factors are much smaller 
than I f - f j [  for the normal scattering. For example, 
the given result has the possibility of being spoiled 
by uncertainties in the anomalous scattering factors 
near the absorption edges and in the absorption 
coeffÉcients of the alloy, due to EXAFS, very slight 
mis-setting of the monochromator for selecting 
wavelength, energy shifts of the absorption edges by 
alloying and so on, if the theoretical constants are 
used for analysis. 

In practice, thus, many (or much more than three) 
kinds of radiation need to be adopted for intensity 
measurements and then the three partial intensities 
should be deduced as the optimum set from the SRO 
intensity data. This is conventionally performed by 
the least-squares fitting method. In such a method, 
application of the restriction condition is particularly 
efficient when the convergence of the fitting process 
is very slow and two or more sets of partial intensity 
values become candidates for a solution. Of those 
sets, the optimum ones are to be associated by aban- 
doning the forbidden sets which never satisfy the 
restriction condition (27). In the next stage, we can 
obtain the best set of partial intensities by rejecting 
the intensity data measured with any radiation which 
leads to a result failing the criterion and then by 
performing the least-squares fitting analysis again 
with use of the remaining justifiable intensity data. 
We can finally give confidence to the result after 
exposing the sources of the uncertainties involved in 
the bad data rejected. 

It is interesting that there can be a negative partial 
intensity in a ternary alloy system. We discuss its 
model of SRO structure and energetics elsewhere 
(Hashimoto, 1987a, b). 

The author wishes to thank Professor H. Iwasaki 
for valuable comments and discussions. 

A P P E N D I X  

The atomic scattering factor f is generally expressed, 
with the anomalous dispersion effect taken into 
account, as 

= f  , + f  , + i f  ,, (A1) f i  0 v • vt 

where fo  implies the normal scattering factor, f l  the 
real part of the anomalous scattering factor and f,'-' 
the imaginary part. Therefore, If  _fj]2 in (12) can be 
calculated as 

I f , - - £12  ] 0 ' = ( f i + f i ) _ ( f o + f ~ ) [ 2 + l f 7  . 2  - f j l .  (A2) 

The first term on the right-hand side is contributed 
from the real parts of the scattering factors and the 
second term from the imaginary parts. Let us insert 
this expression into (12) for the ternary alloy case. 
Then we have 

ISRO(q) = X2[ (a2 + of3)t2 + a3t + ( a3 "~- Of 1) ] 

+X2[(Of2+of3)T2+of3r+(of3+of , ) ] ,  (A3) 

where the partial intensities % are defined in § 3 and 
the identities 

x =  ( f °  + f ' ~ ) - ( f ° c  + f ' c ) ,  

y - ( f °  c + f 'c ) -- ( f OA + f 'A ) , 

and 

X - - f ~ - f ' ~ ,  

Y =--f~ - f ' ~ ,  

t ---- y / x ,  

T -  Y / X  

are used. Since x 2 and X z are positive and indepen- 
dent of each other, their coefficients must both 
be positive in order to make ISRO(q) positive in 
(a3).  
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